Publishing House "ANALITIKA RODIS" (analitikarodis@yandex.ru) http://publishing-vak.ru/

Economic theory 83

UDC 004 DOI: 10.34670/AR.2023.56.40.010
Using Redis Cluster in Interprocess Communication of Information
Systems

Anastasiya M. Gladun

Master's degree in Applied Mathematics and Computer Science,

ATON LLC Leading Programmer,

115035, b. 1, 20, Ovchinnikovskaya emb., Moscow, Russian Federation,
e-mail: netmislei@gmail.com

Abstract

Today there are a huge variety of ways to store information on computers. In the modern
world, databases are used in every web application. To achieve high performance index, the Redis
Cluster uses RAM to store data. The Redis Cluster is often used as a tool for storing data and
caching it, it has become a popular tool due to its scalability and high speed. The article discusses
the features of using Redis Cluster in the course of interprocess communication of information
systems. It is worth noting that the Redis cluster provides a way to start the Redis installation, in
which data is automatically distributed across several Redis nodes. The Redis cluster also provides
some accessibility, the ability to continue operations when some nodes fail or cannot
communicate. The Redis cluster has more capabilities than memcached, and thus is more powerful
and flexible. To summarize, the importance to properly design interprocess interaction at all levels
of a three-tier architecture is emphasized, which significantly speeds up the overall response time
in an information system with horizontal scaling. In addition, it should be said that the testing
method is far from being perfect and in future changes in the testing method are to be made, the
list of tools used is to be expanded and new results to the relevant Internet resources are to be
published.

For citation
Gladun A.M. (2022) Using Redis Cluster in Interprocess Communication of Information
Systems. Ekonomika: vchera, segodnya, zavtra [Economics: Yesterday, Today and Tomorrow],
12 (12A), pp. 83-93. DOI: 10.34670/AR.2023.56.40.010

Keywords
Redis, Redis Cluster, database, software, backup, synchronization.

Using Redis Cluster in Interprocess Communication of Information Systems



84 Economics: Yesterday, Today and Tomorrow. 2022, Vol. 12, Is. 12A

Introduction

Cloud technologies, as one of the results of the scientific and technical potential of the IT industry,
are increasingly used in modern applications and are gradually replacing applications with other
architectures [Zhigalov, Sokolova, 2022]. Cloud applications are applications with a distributed client-
server architecture, where a client is mainly assigned to input and output data, while calculations are
made in the cloud — a remote server or a group of servers communicating via the Internet.

Cloud applications have an undeniable advantage, they reduce the requirements for computing
resources of client devices. As a result, it is possible to process large datasets using slow computers, as
well as mobile devices and IoT (Internet of Things) devices, as a multifunctional infrastructure of the
macro-digital ecosystem [Zhigalov, 2010]. A stable Internet connection is the main requirement for
devices. As of the beginning of 2018, it is available due to the expanse of Wi-Fi, 3G and LTE
technologies.

It’s not enough to have one server to service a large number of client devices (large-scale projects
may have hundreds of thousands or millions client devices to service). This is especially true for cloud
applications with image data and data quickly becoming obsolete. To satisfy the capacity needs, in
addition to vertical scaling (increase in server capacity by mounting more productive components),
horizontal scaling is also applied to. Horizontal scaling assumes increasing the number of servers,
nodes, processors that handle data.

When using a horizontal scaling strategy, both same-type servers can be increased in number, with
evenly distributed same-type tasks, and different-type servers can be used, with narrowly specialized
tasks set for each server. Modern projects use a combined approach, they use groups of servers working
with different types of tasks.

Regardless of the server type, scalable projects experience difficulties in exchanging data between
processes since many processes run on different processors or servers.

The current work is devoted to the analysis of the interprocess communication tools in distributed
computing systems with horizontal scaling.

Research objects involve communication between server processes and communication between
server and client processes. The research subject is an information system with a three-tiered
architecture.

The tasks considered in the paper:

1. To study the problems occurring in interprocess communication.

2. To explore the ways data is exchanged between server processes, between client and server
processes.

3. To design a client-server application using a three-tiered architecture.

4. To test the application by applying different approaches to exchange data on sessions and client-
server communications.

Main body (methodology, results)

1.1 Types of communication in information systems with horizontal scaling

Interprocess communication is a key aspect in modern information systems. Due to well-functioned
communication, especially in case when the system is a distributed one with horizontal scaling, the end
user can quickly have a response to his actions, many users can simultaneously serve the information
system (IS) and the IS maintenance will not be expensive [Gorodnichev, 2017].

Anastasiya M. Gladun



Economic theory 85

In distributed IS, communication between processes is both intra- and extra-level.

Figure 1.1 shows a standard three-tiered architecture [Tanenbaum, 2021]. The first type of
communication occurs between the client-end and the server-end portion of application.
Communication runs on a many-to-one (in case there is no horizontal scaling in the server-end portion
of application) or many-to-many base. The information system developers are fully entrusted to
implement this communication type. They can use both ready-made software solutions with proven
architectural patterns, and their own developments. But, regardless of the implementation, the vast
majority of solutions work on top of the IP network layer protocol, since the Internet network structure
runs on this protocol.

The second communication type occurs within the server-end portion of application. In a scalable
system, this end has several application servers that can perform both similar, and different narrowly
focused tasks.

Figure 1 - A three-tiered architecture in distributed systems

Data between the elements of the application server tier can be exchanged in the following ways:

1. Data exchange within the tier (Fig. 1.2a). Special software is used for data exchange. These may
include individual messaging systems between system and keyvalue storage components, or
mechanisms integrated into server processes that use sockets and other types of network interaction.

2. Data exchange using the database server tier (Fig. 1.2b). In this case, data to be transferred to
the neighboring application server is sent to the database from which data is read by the second
application server.

Each approach has its advantages and disadvantages. The approach to use local intra-tier tools
ensures better productivity and saves database server resources. But the extra mechanisms implemented
complicate developing software for application servers and may sometimes lead to fault-tolerance
reduction of the system due to additional elements in the communication network.

Recently, there has been a tendency to promote communication between client processes. Such a
solution offloads application servers. Basically, these solutions are used in voice and video
communication (Skype establishes direct secure connections when two users talk), secure messaging
(Secret chat mode in Telegram [Grashoff et al., www]) and cooperative file sharing tools (BitTorrent
protocol).

Using Redis Cluster in Interprocess Communication of Information Systems



86 Economics: Yesterday, Today and Tomorrow. 2022, Vol. 12, Is. 12A

Cnoi norvkm

Cnoit normku

E‘

CepBep NpUACKEHN A

=

CepBep NPUAOHEHK i

Cepeep NPUACKEHM i

a)

Cnoit gaHHbIX

Y
pey
b-
Cepsep BI,

6)

Figure 2 - Application server communication options

KAWeHTCKWiA cnoi Cnoi NorMK1 Cnoit AaHHbIX

I
+ T7

Ts-
A

Cepsep I'\pHJBH’:EHMﬁ (T2)

Cepeep B (TE))

MoBuneHoe

NPHACHKEHWE
T3

¥
%
CepBep NpUAoKeEHUI (T4)

Figure 3 - Sequence of communication between information system elements

Optimizing the time spent on interprocess operations is not the only task that distributed system
developers face. There are also a number of problems that systems with calculations distributed among
several machines have.

As mentioned earlier, same-tier inter-place data are to be occasionally synchronized in a three-tier
model of distributed computing systems (DCS) with horizontal scaling. Regarding the database tier,
DBMS developers enable synchronization by using integrated DBMS mechanisms and DB drivers.
Application servers do not always require synchronization. In rare cases, server logic enables its
handlers to be scaled into independent nodes with zero functional losses. But there are situations in
which direct and rapid information exchange is required for the processes implementing server logic.

The first example is illustrated in a system with heterogeneous application servers performing

Anastasiya M. Gladun



Economic theory 87

different functionality (Figure 1.4). The first server processes business logic and records the changes
to the database, the second server converts and scales images, the third server processes video.

Two-way communication in this architecture enables transmitting tasks from the application logic
server to the media handler servers. Direct communication between the servers lightens the database
tier elements.

The second example is illustrated in a system which has a need to frequently access multiplexed
information of large volumes and is relatively rarely changed. These include data on web application
sessions that users have.

A user session is a dataset consisting of the following fields:

1. Unique user identifier that precisely identifies the user (mandatory field).

2. Token. It is a hash generated after the last authentication, which is used when authorizing the
user (mandatory field).

3. The token validity interval (a field which is mandatory depending on the requirements for
information system security).

4. Other optional fields that characterize the current state of the client (last open section).

Figure 4 - Three-tier architecture with multi-task application servers

For security reasons, correctly implemented applications authorize each user action, regardless of
its type — reading data, changing, adding or deleting records. Data reading is a very frequently used
process, and its operation is authorized with the same intensity.

Storing session data in the primary database implies at least twice as many requests. This leads to
a bump in network traffic between application servers and database servers, as well as an increase in
the running time of business logic algorithms due to an increase in data request time. Relational
databases are often highly inefficient in running frequent and simple requests. Therefore, session data
are stored and obtained by using other mechanisms.

Possible ways to synchronize data between application servers:

— Synchronization through a database layer. The solution is simple in its implementation, but is

inappropriate when a high-end solution is required, and relational databases are the core
databases.

Using Redis Cluster in Interprocess Communication of Information Systems



88 Economics: Yesterday, Today and Tomorrow. 2022, Vol. 12, Is. 12A

— The use of data caching tools in RAM with the ability to combine storage between several nodes
(memcached).
— Using special-purpose key-value fast stores (Redis).
— Using interprocess messaging (RabYtMQ).
— Using the runs designed for a specific distributed system.
— Using both simple solutions and their variations with an option to connect p2p, network self-
organization and node accessibility control.
Several options can be combined.
1.2. Synchronization through the database layer
This approach implies storing session data in the main database (Figure 1.5). There is a sheet (in a
relational database), or an individual document (in non-relational document-oriented databases) to
record session data.

KnueHTckne ycrponicrsa CepBepbl NPUAOXEHWUIA Cepsepbl Bl

ey

1]

Ycrpo#creo 1 PHP Server 1

VHTe pHeT - @

Ceccmm:

Yapoiicrso 1
Yapoiicreo 2
Ycrpoiictso 3

Ycrpoiicteo 2 PHP Server 2 MySQU Server

i

il

Ycrpoiicteo 3 PHP Server 3

Figure 5 - Synchronizing sessions through the primary database

This synchronization type is characterized by the following features:

Ease of implementation. There is no need for additional tools. Sometimes additional DBMS
configuration is required to speed up simple requests.

Increased load on the primary database server.

Slow implementation even if database settings are optimized. Modern databases (especially
relational ones) have complex multi-stage request parsing algorithms, as well as algorithms for
searching and reading the requested data. In case of large samples, these DBMSs run quickly with an
acceptable running time, but these databases are redundant and slow when running short repeated
requests.

Data loss tolerance. DBMSs have many mechanisms designed to ensure information integrity, even
of OS or hardware fail during transactions.

1.3 Memory-combining data caching tools

The primary objective of data caching is to accelerate access to the re-requested data. A cache is
fast access intermediate memory with information that is likely to be requested.

The cache size is much smaller than the primary storage size.

Anastasiya M. Gladun



Economic theory 89

Data addressing mode is an important aspect of cache memory. The data in the cache is a key-value
pair. Addressing occurs through the key. The key can be:

The entire object identifier.

Part of the object identifier.

Hash function computed from the entire object or from some of its fields.

Using a hash or part of an object identifier as a key reduces the difficulty to search a value at the
intended address to O (1), that is, regardless of the object location, the search will take roughly the
same time (with some deviations).

When accessing data by a specified key, there are two options — cache hit (the required data is
located at the specified address) and cache miss (data is missing, or refers to another object). Recording
is possible both in an empty data cell and on top of another recorded object.

Although the cache is a temporary data store and data can be lost by running out of cache limits or
overwriting a value, some scenarios make it possible to safely use caching tools as a tool for
communication between servers. It is important to provide for data back-up (if necessary) in ROM.

1.4 Memcached distributed caching system

Memcached is software that caches data in RAM as a hash table. It is free and open source software
under the BSD license. Memcached can run under Unix-like operating systems (Linux, macOS,
FreeBSD) and Windows.

Memcached provides a huge hash table distributed (if necessary) between multiple machines.
When the table is full, incoming records overwrite old least used data. Distributed caching applications
typically first access memcached to request data and in case of failure request data from slow stores.

Memcached is based on the client-server interface architecture (Figure 1.6). Servers have a content
addressable key-value array in RAM, clients populate the array and make requests to it. The maximum
key size is 250 bytes, the maximum value size is 1 megabyte. Only strings are supported as values,
which is not always convenient and efficient for storing and processing some data structures.

Client Server
Put, Get, Remove
(Sync)

Memcached
Server Partition 1
Lh)]
L=
Q Memcached
Server Partition 2
(4]
O
= R
Memcached
g Server Partition 3
Memcached
Server Partition 4
\—

Figure 6 - Memcached scaling. Fitzpatrick B. Distributed caching with memcached

Clients make requests to memcached servers by using client libraries, connecting via TCP or UDP
protocol (port 11211). A client knows the entire set of servers, while the servers do not have information
about the clients (requests are initiated by clients only). When a client requests data, the key hash-based
client library determines which server to use. Data distribution through the key split ranges ensures the

Using Redis Cluster in Interprocess Communication of Information Systems



90 Economics: Yesterday, Today and Tomorrow. 2022, Vol. 12, Is. 12A

solution scalability (Figure 1.6).

Figure 1.7 shows an implementation variation of the session store by using the memcached
distributed cache. Sessions, in addition to being in the database, are also cached on memcached servers
and are available from all application servers.

KnneHTckre ycTpoicTea Ceppepbl NpUACXKEHHA CepBeptl XxpaHWIMLWa ceccnid Cepoepul B4,

i m, | | 0.8

Yapoiaso 1 PHP Server 1 Memgachled Server

)
]
El

)

i
I

Figure 7 - Storing sessions by using memcached

Scenario to store sessions by using Memcached:

1. Rarely used data and complex data are stored in the main database.

2. Frequently used and change-resistant data is generated at the first request, stored in the main
database, and added to the memcached store as well.

3. In case of a second request, the data is requested from memcached and, if none exists, the main
database is requested (or data is regenerated).

4. In case of data editing, changes are immediately recorded in the main database or recorded
periodically (depending on the performance requirements and data loss criticality).

It is important to remember that memcached cannot store user data that is not backed up and cannot
be recovered. Additionally, memcached can store session data - tokens generated after authentication.
Occasional token loss will only cause an extra need to re-authenticate, while in some cases re-
generation of new tokens is useful in terms of security.

1.5 Redis key-value data store

Redis is open source software that stores data in key-value RAM and ROM and is used as a
database, cache and message transfer tool (interprocess communication tool) [Bartenev, www]. Redis
supports several types of data stored, has a integrated data replication system, Lua script support, a data
caching system with advanced replacement algorithms, transaction support, and several persistence
data storage levels.

To achieve high performance, Redis stores data in RAM. Depending on the needs, the developer
can flexibly reconfigure the system to store data in ROM (from occasional database dump to recording
new data after each operation). If necessary, data storage in ROM can be turned off by transforming
Redis into a full-fledged distributed network caching system.

Redis can store the following data types [Nelson, 2022]:

— String.

— Array of strings.

— Rowset (a set of rows with no values repeated).

Anastasiya M. Gladun



Economic theory 91

— Ordered rowsets (a set of non-repeated rows sorted by value).

— Hash tables.

— HyperLogLogs-like data used to estimate the number of unique values in datasets.

— Geolocation data.

Redis supports master-slave replication. Similar to MySQL, the main Redis server data can be
backed up on as many subordinate servers as available. Replication can be configured so that servers
could be used as free-running by using the signature schemes and processing these events on application
servers. As with MySQL master-slave replication, this innovative design provides read scalability but
not write scalability [Zhigalov, 2022].

The Redis Sentinel subsystem has been developed to ensure more flexible scaling. The subsystem
main tasks include:

Monitoring. Sentinel processes constantly ensure that the primary and subordinate servers are up
and running.

Alerting. Notifications of the events that occur with Redis instances can be sent to the administrator
or other programs through the API in case of emergency.

Fault tolerance automation. If the primary server fails, Sentinel ensures reconfiguration and
transforms an ex-subordinate server into the primary one.

Configuration. Applying to Sentinel, clients can find out the current addresses of the main server
in case reconfiguration occured.

As of 2021, Sentinel had already been an outdated solution for scaling Redis. The replacement is
Redis clustering using the Redis Cluster utility suite. Its main advantage is simultaneous support for
sharding and replication. Sharding implies that a database is distributed into several servers, with each
server storing only a specific part, not a full back-up, unlike replication. This enables a fault tolerant
and fast architecture [Kostenko, Stupina, 2022].

Each instance of the Redis server runs in a single-threaded mode. When changes are to be reordered
to files by using an add-only mode, a single-threaded mode can be used. This is a weakness for Redis,
since the Redis process cannot run stored procedures and other tasks in parallel. All operations run
sequentially, which is ineffective in multiprocessor systems.

Although Redis is a key-value data store, data can be requested by using not only key, but by
matching one or more criteria as well. It supports intersection and union operations, data range
sampling, data aggregation, sorting, and many other operations peculiar to full-scale relational and
NoSQL DBMS. But, unlike direct key access operations, access to data through additional operations
has another order complexity, which should be borne in mind when developing high-load projects.

Redis is a more flexible solution than memcached; it enables fast and secure storage with less effort
taken to ensure that data is stored in ROM. This solution also offloads the primary database server,
since, due to the mechanisms that store data in a secure place and the ability to replicate them, there is
no need to back up this data in the primary database.

Conclusion

Thus, it is worth noting that the Redis cluster provides a way to start the Redis installation, in which
data is automatically distributed across several Redis nodes. The Redis cluster also provides some
accessibility, the ability to continue operations when some nodes fail or cannot communicate. The
Redis cluster has more capabilities than memcached, and thus is more powerful and flexible. It is used
by many companies and in numerous critical production environments.

Using Redis Cluster in Interprocess Communication of Information Systems



92 Economics: Yesterday, Today and Tomorrow. 2022, Vol. 12, Is. 12A

Redis Cluster enables to:

- automatically split the dataset between multiple nodes.

- continue operation when a subset of nodes fails or cannot communicate with the rest of the cluster.

To summarize, the importance to properly design interprocess interaction at all levels of a three-
tier architecture is emphasized, which significantly speeds up the overall response time in an
information system with horizontal scaling. In addition, it should be said that the testing method is far
from being perfect and in future changes in the testing method are to be made, the list of tools used is
to be expanded and new results to the relevant Internet resources are to be published.

References

1. Bartenev V.V. The HTTP/2 Module in NGINX. Available at: https://www.nginx.com/blog/http2-module-nginx/
[Accessed 12/12/2022]

2. Gorodnichev M.G. (2017) Metody proektirovaniya i razrabotki klient-servernykh prilozhenii [Methods for designing and
developing client-server applications]. In: Tekhnologii informatsionnogo obshchestva [Technologies of the Information
Society].

3. Grashoff K., Heemskerk, B., Usta B., Vonk M. Telegram-Web. Available at: https://web.telegram.org/z/ [Accessed
12/12/2022]

4. Kostenko I.P., Stupina M.V. (2022) Povyshenie proizvoditel'nosti web-prilozhenii sredstvami SUBD Redis [Improving
the performance of web applications using the Redis DBMS]. Molodoi issledovatel' Dona [Don’s young researcher], 4
(37), pp. 29-32.

. Nelson J. (2016) Mastering Redis. Birmingham, UK: PACKT Publishing.

. Tanenbaum A. (2021) Raspredelennye sistemy [Distributed systems]. Moscow.

7. Tikhonov N.A., Budnikova I.K. (2020) Analiz i obrabotka rezervnykh kopii Redis [Analysis and processing of Redis
backups]. In: Informatsionnye tekhnologii v stroitel'nykh, sotsial'nykh i ekonomicheskikh sistemakh [Information
technologies in construction, social and economic systems]. VVoronezh.

8. Zhigalov V.l. (2010) Osnovnye usloviya sozdaniya i razvitiya innovatsionno-tekhnologicheskikh parkov [Basic
conditions for the creation and development of innovation and technology parks]. Innovatsii i investitsii [Innovations
and investments], 2, pp. 50-52.

9. Zhigalov V.I. (2022) Tendentsii v formirovanii i ispol'zovanii nematerial'nykh aktivov innovatsionno aktivnykh
predpriyatii [Trends in the Formation and Use of Intangible Assets of Innovatively Active Enterprises]. Innovatsii i
investitsii [Innovations and investments], 9, pp. 58-62.

10. Zhigalov V.1., Sokolova M.V. (2022) lzuchenie innovatsionnykh protsessov na osnove analiza patentnoi aktivnosti
rezidentov i nerezidentov, i nauchno-tekhnicheskogo potentsiala strany [The study of innovation processes based on the
analysis of patent activity of residents and non-residents, and the scientific and technical potential of the country].
Sovremennaya nauka: aktual’nye problemy teorii i praktiki. Seriya: Ekonomika i pravo [Modern Science: Actual
Problems of Theory and Practice. Series: Economics and law], 9, pp. 37-44.

o o

Hcnoab3oBanne kiaacrepa Redis B MeknponeccHoM B3auMoAeiiCTBUM
nHGOPMAIMOHHBIX CHCTEM

I'nagyn Anacracuss MuxaiijioBHa

Benynmwmit nporpammuct OO0 «ATOH»,
115035, Poccuiickas denepanus, MockBa, OBUunHHUKOBCKast Hal., 20c1;
e-mail: netmislei@gmail.com

AHHOTAIUA
CeromHsi CyImecTByeT OIrpOMHOE pa3HooOpaswe CrocoOOB XpaHEeHHs WHOOpMAIMu Ha
KOMITbI0TEepax. B coBpeMeHHOM Mupe 0a3bl JaHHBIX HCIONB3YIOTCS B KAXKIOM BEO-PUIOKCHHH.

Anastasiya M. Gladun



Economic theory 93

JIsi OCTHXKEHHSI BBICOKOTO IIOKa3aTelsl MPOHM3BOAUTENHHOCTH Kiactep Redis wucnonbiyer
OIepaTHUBHYIO MaMsTh JuUisd XpaHeHus: naHHbIX. Kiactep Redis wacto mcmonmb3yercsi B KadecTBe
MHCTPYMEHTA JJI1 XPAaHEHUs JaHHBIX U UX KAUIMPOBAHMS, OH CTaJ IOIMYJISIPHBIM MHCTPYMEHTOM
Omarofapst cBoel MaclmITabUPyeMOCTH M BBICOKOW CKOpPOCTH. B cratbe paccMaTpuBaroTcs
OCOOCHHOCTH HCIIONb30BaHUs KiacTepa Redis B mpomecce MEKIPOIECCHOTO B3aHMMOJICHCTBUS
nHpOpMallMOHHBIX cucTeM. IloguepkuBaeTcss BaKHOCTb IMPABWIBHOTO  IPOEKTHPOBAHUS
MEXIPOLIECCHOTO B3aUMOJICHCTBUS Ha BCEX YPOBHAX TPEXYPOBHEBOM apXUTEKTypbl, 4TO
3HAYUTEIBHO YCKOPSET 00Iee BpeMsi OTKIMKAa B MH(POPMALMOHHOW CHCTEME C TOPU30HTAIBHBIM
MacmtabupoBaHueM. MeToauka TECTUPOBaHMS Jajieka OT COBEpUIEHCTBA M B JalibHeiiiem
IIPEICTOUT BHECEHUE U3MEHEHUI B METOJUKY TECTUPOBAHMSI, PACIIMPEHUE CIIMCKA UCIIOJIb3YEMBIX
MHCTPYMEHTOB U ITyOJIMKAIUs HOBBIX PE3YJIbTaTOB Ha COOTBETCTBYIOIINX MHTEPHET-PECYpCax.

I[J'[ﬂ HUTUPOBAHUA B HAYYHBIX MCCJICAOBAHUAX

Imanyn A.M. Hcnosnp3oBanue kimactepa RediS B MEKIpomecCHOM B3aUMOJCHCTBUH
UHPOPMAIMOHHBIX crcTeM // DKOHOMHUKA: Buepa, cerojans, 3atpa. 2022. Tom 12. Ne 12A. C. 83-
93. DOI: 10.34670/AR.2023.56.40.010

KiaroueBnie cjioBa

8.
9.

Redis, xinactep Redis, 0a3a maHHBIX, pOrpaMMHOE OOECIICYCHHUE, PE3ePBHOE KOMHPOBAHMHE,
CHHXPOHH3AIIHUSL.

bubimorpagus

.Topomunues M.I. Metoabl NpoeKTUpOBaHUS M Pa3pabOTKU KIMEHT-CEPBEPHBIX IpuiokeHnd // TexHomoruu
nHpopmanmonsoro obiecrsa. 2017. C. 439-440.

. Kuranos B.M1. OcHOBHBIE YCIIOBUSI CO3/IaHHS U PA3BUTHsI MHHOBALIMOHHO-TEXHOJIOIMYECKUX NapkoB // MIHHOBauuu u
nusectuian. 2010. Ne 2. C. 50-52.

. Kuranos B.W. Tennennun B GopMUpPOBaHNH U UCIIOJIB30BAHUH HEMAaTEPHAIbHBIX aKTHBOB MHHOBAIIMOHHO aKTHBHBIX
npennpusTaii // inaoBanmu u naBectrum. 2022. Ne 9. C. 58-62.

. Kuranos B.U., CoxonoBa M.B. M3yueHne MHHOBALIMOHHBIX MPOLIECCOB HA OCHOBE aHAJIM3a MAaTEHTHON aKTUBHOCTH
PE3UICHTOB M HEPE3W/IEHTOB, M HAYYHO-TEXHHYECKOTO IMoTeHnuana crpansl / CoBpeMeHHas HayKa: aKTyaJbHbIC
po0OieMbl Teopun U pakTuKu. Cepus: DkoHOMUKA U TipaBo. 2022, Ne 9. C. 37-44.

. Kocrenko WM.II., Crynuaa M.B. TloBsienne npousBoautensHocti Web-mpunoxennit cpeactBamu CYBJ] Redis //
Mornonoii uccienosarens Jlona. 2022. Ne 4 (37). C. 29-32.

. Tanenbaym 3. Pacnpenenennsie cucremsl. M., 2021. 584 c.

. TuxonoB H.A., Bynuukosa M.K. Ananmn3 u o6paboTka pesepBubix komuii Redis // MHpopMaMoHHbIE TEXHOIOTHH B

CTPOUTEJIbHBIX, COIMANLHBIX U SKOHOMHUUECKHX cucTeMax. Boponex, 2020. C. 121-124.
Bartenev V.V. The HTTP/2 Module in NGINX. URL: https://www.nginx.com/blog/http2-module-nginx/
Grashoff K., Heemskerk, B., Usta B., Vonk M. Telegram-Web. URL: https://web.telegram.org/z/

10. Nelson J. Mastering Redis. Birmingham, UK: PACKT Publishing, 2016. 366 p.

Using Redis Cluster in Interprocess Communication of Information Systems



